VIDEO ENCODING OPTIMIZATION FOR MACHINE LEARNING CONTENT CATEGORIZATION
Systems, apparatuses, and methods for performing machine learning content categorization leveraging video encoding pre-processing are disclosed. A system includes at least a motion vector unit and a machine learning (ML) engine. The motion vector unit pre-processes a frame to determine if there is t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems, apparatuses, and methods for performing machine learning content categorization leveraging video encoding pre-processing are disclosed. A system includes at least a motion vector unit and a machine learning (ML) engine. The motion vector unit pre-processes a frame to determine if there is temporal locality with previous frames. If the objects of the scene have not changed by a threshold amount, then the ML engine does not process the frame, saving computational resources that would typically be used. Otherwise, if there is a change of scene or other significant changes, then the ML engine is activated to process the frame. The ML engine can then generate a QP map and/or perform content categorization analysis on this frame and a subset of the other frames of the video sequence. |
---|