MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES
The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data,...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LOH, Joanna Kejun HUANG, Zhiqiang LINDLEY, Roger Alan TAN, Li Ming KOENTJORO, Olivia Fatma |
description | The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024332092A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024332092A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024332092A13</originalsourceid><addsrcrecordid>eNrjZHDwdXT28PRzVfBxdQzy8_RzV_D1d3H1UXDzD1IIdvX1dPb3cwl1DgHyfB39Qt0cnUNCg0CqAoL8nV2Dg12DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxkYGlkaOhMXGqAG-dK9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><source>esp@cenet</source><creator>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</creator><creatorcontrib>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</creatorcontrib><description>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SEMICONDUCTOR DEVICES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241003&DB=EPODOC&CC=US&NR=2024332092A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241003&DB=EPODOC&CC=US&NR=2024332092A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LOH, Joanna Kejun</creatorcontrib><creatorcontrib>HUANG, Zhiqiang</creatorcontrib><creatorcontrib>LINDLEY, Roger Alan</creatorcontrib><creatorcontrib>TAN, Li Ming</creatorcontrib><creatorcontrib>KOENTJORO, Olivia Fatma</creatorcontrib><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><description>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDwdXT28PRzVfBxdQzy8_RzV_D1d3H1UXDzD1IIdvX1dPb3cwl1DgHyfB39Qt0cnUNCg0CqAoL8nV2Dg12DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxkYGlkaOhMXGqAG-dK9g</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>LOH, Joanna Kejun</creator><creator>HUANG, Zhiqiang</creator><creator>LINDLEY, Roger Alan</creator><creator>TAN, Li Ming</creator><creator>KOENTJORO, Olivia Fatma</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><author>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024332092A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>LOH, Joanna Kejun</creatorcontrib><creatorcontrib>HUANG, Zhiqiang</creatorcontrib><creatorcontrib>LINDLEY, Roger Alan</creatorcontrib><creatorcontrib>TAN, Li Ming</creatorcontrib><creatorcontrib>KOENTJORO, Olivia Fatma</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LOH, Joanna Kejun</au><au>HUANG, Zhiqiang</au><au>LINDLEY, Roger Alan</au><au>TAN, Li Ming</au><au>KOENTJORO, Olivia Fatma</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><date>2024-10-03</date><risdate>2024</risdate><abstract>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024332092A1 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING SEMICONDUCTOR DEVICES |
title | MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LOH,%20Joanna%20Kejun&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024332092A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |