MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES

The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LOH, Joanna Kejun, HUANG, Zhiqiang, LINDLEY, Roger Alan, TAN, Li Ming, KOENTJORO, Olivia Fatma
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LOH, Joanna Kejun
HUANG, Zhiqiang
LINDLEY, Roger Alan
TAN, Li Ming
KOENTJORO, Olivia Fatma
description The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024332092A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024332092A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024332092A13</originalsourceid><addsrcrecordid>eNrjZHDwdXT28PRzVfBxdQzy8_RzV_D1d3H1UXDzD1IIdvX1dPb3cwl1DgHyfB39Qt0cnUNCg0CqAoL8nV2Dg12DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxkYGlkaOhMXGqAG-dK9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><source>esp@cenet</source><creator>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</creator><creatorcontrib>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</creatorcontrib><description>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SEMICONDUCTOR DEVICES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024332092A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024332092A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LOH, Joanna Kejun</creatorcontrib><creatorcontrib>HUANG, Zhiqiang</creatorcontrib><creatorcontrib>LINDLEY, Roger Alan</creatorcontrib><creatorcontrib>TAN, Li Ming</creatorcontrib><creatorcontrib>KOENTJORO, Olivia Fatma</creatorcontrib><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><description>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDwdXT28PRzVfBxdQzy8_RzV_D1d3H1UXDzD1IIdvX1dPb3cwl1DgHyfB39Qt0cnUNCg0CqAoL8nV2Dg12DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxkYGlkaOhMXGqAG-dK9g</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>LOH, Joanna Kejun</creator><creator>HUANG, Zhiqiang</creator><creator>LINDLEY, Roger Alan</creator><creator>TAN, Li Ming</creator><creator>KOENTJORO, Olivia Fatma</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><author>LOH, Joanna Kejun ; HUANG, Zhiqiang ; LINDLEY, Roger Alan ; TAN, Li Ming ; KOENTJORO, Olivia Fatma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024332092A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>LOH, Joanna Kejun</creatorcontrib><creatorcontrib>HUANG, Zhiqiang</creatorcontrib><creatorcontrib>LINDLEY, Roger Alan</creatorcontrib><creatorcontrib>TAN, Li Ming</creatorcontrib><creatorcontrib>KOENTJORO, Olivia Fatma</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LOH, Joanna Kejun</au><au>HUANG, Zhiqiang</au><au>LINDLEY, Roger Alan</au><au>TAN, Li Ming</au><au>KOENTJORO, Olivia Fatma</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES</title><date>2024-10-03</date><risdate>2024</risdate><abstract>The disclosure describes methods and systems for training and deploying a machine learning predictive model for use in a semiconductor manufacturing process. Specifically, the present disclosure provides for training machine learning predictive models for manufacturing components using design data, process parameters, gas flow configurations from a pixelated showerhead, temperature profile across an electrostatic chuck, and measured uniformity profiles of processed wafers. The present disclosure also provides for deploying the machine learning predictive model to effectuate real-time adjustments to a manufacturing process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024332092A1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
SEMICONDUCTOR DEVICES
title MACHINE LEARNING MODEL FOR SEMICONDUCTOR MANUFACTURING PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LOH,%20Joanna%20Kejun&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024332092A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true