MODEL-BASED REINFORCEMENT LEARNING

A computer that includes a processor and a memory, the memory including instructions executable by the processor to train an agent neural network to input a first state and output a first action, input the first action to an environment and determine a second state and a reward. Koopman model neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chakraborty, Neeloy, Balakrishnan, Kaushik, Upadhyay, Devesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computer that includes a processor and a memory, the memory including instructions executable by the processor to train an agent neural network to input a first state and output a first action, input the first action to an environment and determine a second state and a reward. Koopman model neural network can be trained based on the first state, the first action and the second state to determine a fake state. The agent neural network can be re-trained and the Koopman model neural network can be re-trained based on reinforcement learning including the first state, the first action, the second state, the fake state, and the reward.