REAL-TIME DETECTION AND PARAMETER ESTIMATION OF RADAR SIGNALS IN TIME VARYING NOISY ENVIRONMENTS

Radar signal detection and parameter estimation is central in passive surveillance systems, providing inputs for many information processing modules in order to detect, localize, indentify and intercept hostile targets. The proposed method for detecting radar signals and estimating their intra-pulse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dang, Trung Duc, Nguyen, Thai Binh, Do, Van Long, Nguyen, Van Tho, Nguyen, Manh Linh, Nguyen, Tran Minh, Hoang, Anh Hung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radar signal detection and parameter estimation is central in passive surveillance systems, providing inputs for many information processing modules in order to detect, localize, indentify and intercept hostile targets. The proposed method for detecting radar signals and estimating their intra-pulse parameters in time-varying noisy environments consists of several stages: magnitude-squared envelopes calculation, adaptive noise floor estimation, detection statistics calculation, rising edge detection, time of arrival estimation, falling edge detection, time of departure estimation, pulse width estimation, amplitude estimation and center frequency and bandwidth estimation. Estimated intra-pulse parameters are wrapped into pulse descriptor words (PDWs) for information processing tasks, where each PDW consists of time of arrival, time of departure, pulse width, pulse amplitude, center frequency, signal bandwidth, noise floor level and additional useful information. The method is sequential, implemented in hardware platforms for real-time surveillance applications. The proposed method yielded much better performance than classical threshold-based edge (TED) detection methods.