PROVISIONING DEEP LEARNING (DL) MODELS THAT PRESERVE RELATIONSHIPS BETWEEN RESPONSE VARIABLES AND SELECTED EXPLANATORY VARIABLES

Implementations for training a denoising stacked autoencoder (DAE) using a noisy training dataset comprising a noisy sub-set and a non-noisy sub-set, providing an artificial neural network (ANN) including multiple hidden layers, at least one hidden layer including at least a portion of an encoder of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chate, Sneha, Gaba, Rajan, Rajendran, Boobesh, Chopra, Neha, Tyagi, Shiva, Passalis, Georgios
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Implementations for training a denoising stacked autoencoder (DAE) using a noisy training dataset comprising a noisy sub-set and a non-noisy sub-set, providing an artificial neural network (ANN) including multiple hidden layers, at least one hidden layer including at least a portion of an encoder of the DAE, the at least a portion of the encoder comprising parameters determined during training of the DAE, training the ANN using a training dataset, and providing a version of the ANN for inference.