INCORPORATING STRUCTURED KNOWLEDGE IN NEURAL NETWORKS
An approach to structured knowledge modeling and the incorporation of learned knowledge in neural networks is disclosed. Knowledge is encoded in a knowledge base (KB) in a manner that is explicit and structured, such that it is human-interpretable, verifiable, and editable. Another neural network is...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approach to structured knowledge modeling and the incorporation of learned knowledge in neural networks is disclosed. Knowledge is encoded in a knowledge base (KB) in a manner that is explicit and structured, such that it is human-interpretable, verifiable, and editable. Another neural network is able to read from and/or write to the knowledge model based on structured queries. The knowledge model has an interpretable property name-value structure, represented using property name embedding vectors and property value embedding vectors, such that an interpretable, structured query on the knowledge base may be formulated by a neural model in terms of tensor operations. The knowledge base admits gradient-based training or updates (of the knowledge base itself and/or a neural network(s) supported by the knowledge base), allowing knowledge or knowledge representations to be inferred from a training set using machine learning training methods. |
---|