INCORPORATING STRUCTURED KNOWLEDGE IN NEURAL NETWORKS

An approach to structured knowledge modeling and the incorporation of learned knowledge in neural networks is disclosed. Knowledge is encoded in a knowledge base (KB) in a manner that is explicit and structured, such that it is human-interpretable, verifiable, and editable. Another neural network is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winn, John Michael, Zaykov, Yordan Kirilov, Hensman, James John, MITRA, Bhaskar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approach to structured knowledge modeling and the incorporation of learned knowledge in neural networks is disclosed. Knowledge is encoded in a knowledge base (KB) in a manner that is explicit and structured, such that it is human-interpretable, verifiable, and editable. Another neural network is able to read from and/or write to the knowledge model based on structured queries. The knowledge model has an interpretable property name-value structure, represented using property name embedding vectors and property value embedding vectors, such that an interpretable, structured query on the knowledge base may be formulated by a neural model in terms of tensor operations. The knowledge base admits gradient-based training or updates (of the knowledge base itself and/or a neural network(s) supported by the knowledge base), allowing knowledge or knowledge representations to be inferred from a training set using machine learning training methods.