LANDMARK PERCEPTION FOR LOCALIZATION IN AUTONOMOUS SYSTEMS AND APPLICATIONS

In various examples, perception of landmark shapes may be used for localization in autonomous systems and applications. In some embodiments, a deep neural network (DNN) is used to generate (e.g., per-point) classifications of measured 3D points (e.g., classified LiDAR points), and a representation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ogden, Samuel, WEHR, David, AKBARZADEH, Amir, ABBOTT, Joshua Edward, PEHSERL, Joachim, CHEN, Ke
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In various examples, perception of landmark shapes may be used for localization in autonomous systems and applications. In some embodiments, a deep neural network (DNN) is used to generate (e.g., per-point) classifications of measured 3D points (e.g., classified LiDAR points), and a representation of the shape of one or more detected landmarks is regressed from the classifications. For each of one or more classes, the classification data may be thresholded to generate a binary mask and/or dilated to generate a densified representation, and the resulting (e.g., dilated, binary) mask may be clustered into connected components that are iteratively: fitted a shape (e.g., a polynomial or Bezier spline for lane lines, a circle for top-down representations of poles or traffic lights), weighted, and merged. As such, the resulting connected components and their fitted shapes may be used to represent detected landmarks and used for localization, navigation, and/or other uses.