MACHINE LEARNING BASED YIELD PREDICTION
There is provided a system and method of examination of a semiconductor specimen. The method includes obtaining an e-beam image representative of a given layer of a given structure on the specimen in runtime, processing at least the e-beam image using a ML model, and obtaining yield related predicti...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is provided a system and method of examination of a semiconductor specimen. The method includes obtaining an e-beam image representative of a given layer of a given structure on the specimen in runtime, processing at least the e-beam image using a ML model, and obtaining yield related prediction with respect to the given structure prior to performing an electrical test. The ML model is previously trained using a training set comprising multiple stacks of e-beam images corresponding to multiple sites of the given structure on one or more training specimens, each stack of e-beam images representative of the at least given layer of a respective site; and test data acquired from an electrical test performed at the multiple sites and related to actual yield of the training specimens, the test data respectively correlated with the stacks of e-beam images and used as ground truth thereof. |
---|