Training Machine-Learned Models with Label Differential Privacy
An example method is provided for conducting differentially private communication of training data for training a machine-learned model. Initial label data can be obtained that corresponds to feature data. A plurality of label bins can be determined to respectively provide representative values for...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An example method is provided for conducting differentially private communication of training data for training a machine-learned model. Initial label data can be obtained that corresponds to feature data. A plurality of label bins can be determined to respectively provide representative values for initial label values assigned to the plurality of label bins. Noised label data can be generated, based on a probability distribution over the plurality of label bins, to correspond to the initial label data, the probability distribution characterized by, for a respective noised label corresponding to a respective initial label of the initial label data, a first probability for returning a representative value of a label bin to which the respective initial label is assigned, and a second probability for returning another value. The noised label data can be communicated for training the machine-learned model. |
---|