SHORT-TERM TRAFFIC SPEED PREDICTION AND FORECASTING USING MACHINE LEARNING ANALYSIS OF SPATIOTEMPORAL TRAFFIC SPEED DEPENDENCIES IN PROBE AND WEATHER DATA
A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states |
---|