SHORT-TERM TRAFFIC SPEED PREDICTION AND FORECASTING USING MACHINE LEARNING ANALYSIS OF SPATIOTEMPORAL TRAFFIC SPEED DEPENDENCIES IN PROBE AND WEATHER DATA

A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KHOSHMAGHAM, SHAYAN, SYMES, TIFFANY E, HOSSEINI, POUYAN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states