3D SEGMENTATION OF LESIONS IN CT IMAGES USING SELF-SUPERVISED PRETRAINING WITH AUGMENTATION

A method or system for training a convolutional neural network (CNN) for medical imaging analysis. The system pre-trains the CNN's encoder using a dataset of unlabeled 3D medical images. Each 3D image includes an annotated slice delineating a boundary of a lesion and multiple non-annotated 2D s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Yiqiao, Goldmacher, Gregory, Chen, Antong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method or system for training a convolutional neural network (CNN) for medical imaging analysis. The system pre-trains the CNN's encoder using a dataset of unlabeled 3D medical images. Each 3D image includes an annotated slice delineating a boundary of a lesion and multiple non-annotated 2D slices above and below the annotated slice. The system then fine-tunes the pre-trained encoder using an annotated 2D image dataset. The annotated 2D image dataset includes multiple 2D slices of lesions, each including an annotation that delineates a boundary of a corresponding lesion.