NOWCASTING USING GENERATIVE NEURAL NETWORKS

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for precipitation nowcasting using generative neural networks. One of the methods includes obtaining a context temporal sequence of a plurality of context radar fields characterizing a real-world location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brock, Andrew, Willson, Matthew James, Lenc, Karel, Ravuri, Suman, Lam, Remi Roger Alain Paul, Mirowski, Piotr Wojciech
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods, systems, and apparatus, including computer programs encoded on computer storage media, for precipitation nowcasting using generative neural networks. One of the methods includes obtaining a context temporal sequence of a plurality of context radar fields characterizing a real-world location, each context radar field characterizing the weather in the real-world location at a corresponding preceding time point; sampling a set of one or more latent inputs by sampling values from a specified distribution; and for each sampled latent input, processing the context temporal sequence of radar fields and the sampled latent input using a generative neural network that has been configured through training to process the temporal sequence of radar fields to generate as output a predicted temporal sequence comprising a plurality of predicted radar fields, each predicted radar field in the predicted temporal sequence characterizing the predicted weather in the real-world location at a corresponding future time point.