Forecasting Uncertainty in Machine Learning Models

Provided are systems and methods for generating a score for any model which can be updated online, regardless of model type architecture and parameters, leveraging relations between regret and uncertainty.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shamir, Gil
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Provided are systems and methods for generating a score for any model which can be updated online, regardless of model type architecture and parameters, leveraging relations between regret and uncertainty.