DATA IMPUTATION USING AN INTERCONNECTED VARIATIONAL AUTOENCODER MODEL

Embodiments of the present disclosure provide for improved data processing using interconnected variational autoencoder models, which may be used for any of a myriad of purposes. Some embodiments specially train the interconnected variational autoencoder models by utilizing different training scenar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HALPERIN, Eran, TILLMAN, Robert E, Hill, Brian Lawrence, BATRA, Sanjit S, NASSAR, Josue Ramon
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Embodiments of the present disclosure provide for improved data processing using interconnected variational autoencoder models, which may be used for any of a myriad of purposes. Some embodiments specially train the interconnected variational autoencoder models by utilizing different training scenarios corresponding to presence and/or absence of particular data in a training data set. Particular encoder(s) and/or decoder(s) from the specially trained interconnected variational autoencoder models may then be utilized to improve accuracy of the desired data processing tasks, for example, to generate particular output data.