PREDICTING SOUND PLEASANTNESS USING REGRESSION PREDICTION MACHINE LEARNING MODEL

Machine learning is used to predict a pleasantness of a sound emitted from a device. A plurality of pleasantness ratings from human jurors are received, each pleasantness rating corresponding to a respective one of a plurality of sounds emitted by one or more devices. A microphone system detects a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LANG, Florian, ALBER, Thomas, CABRITA CONDESSA, Filipe J, AU, Carine, FATHONY, Rizal Zaini Ahmad, KUKA, Michael, SCHORN, Felix
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning is used to predict a pleasantness of a sound emitted from a device. A plurality of pleasantness ratings from human jurors are received, each pleasantness rating corresponding to a respective one of a plurality of sounds emitted by one or more devices. A microphone system detects a plurality of measurable sound qualities (e.g., loudness, tonality, sharpness, etc.) of these rated sounds. A regression prediction model is trained based on the jury pleasantness ratings and the corresponding measurable sound qualities. Then, the microphone system detects measurable sound qualities of an unrated sound that has not been rated by the jury. The trained regression prediction model is executed on the measurable sound quality of the unrated sound to yield a predicted pleasantness of the unrated sound.