Threat Disposition Analysis and Modeling Using Supervised Machine Learning
An enhanced threat disposition analysis technique is provided. In response to receipt of a security threat identified in an alert, a threat disposition score (TDS) is retrieved. The TDS is generated from a machine learning scoring model that is built from information about historical security threat...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An enhanced threat disposition analysis technique is provided. In response to receipt of a security threat identified in an alert, a threat disposition score (TDS) is retrieved. The TDS is generated from a machine learning scoring model that is built from information about historical security threats, including historical disposition of one or more alerts associated with the historical security threats. The TDS is based in part on an effectiveness of a prior calculated TDS to predict a particular historical disposition associated with the alert. The system augments an alert to include the threat disposition score, optionally together with a confidence level, to generate an enriched alert. The enriched alert is then presented to the security analyst for handling directly. Preferably, the machine learning model is updated continuously as the system handles security threats, thereby increasing the predictive benefit of the TDS scoring. |
---|