MACHINE LEARNING-BASED INVARIANT DATA REPRESENTATION
A system and method for predicting a condition of a subject may include one or more autoencoder modules, trained to: receive at least one content data element pertaining to the subject from one or more data sources of a plurality of data sources; and generate a source-invariant representation of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A system and method for predicting a condition of a subject may include one or more autoencoder modules, trained to: receive at least one content data element pertaining to the subject from one or more data sources of a plurality of data sources; and generate a source-invariant representation of the at least one content data element in a latent space of the one or more autoencoders. One or more machine-learning (ML) based classification models may receive the source-invariant representation of the at least one content data element, and produce therefrom a prediction data element, which may represent a predicted condition of the subject. |
---|