HYBRID FEDERATED LEARNING OF MACHINE LEARNING MODEL(S)

Implementations disclosed herein are directed to a hybrid federated learning (FL) technique that utilizes both federated averaging (FA) and federated distillation (FD) during a given round of FL of a given global machine learning (ML) model. Implementations may identify a population of client device...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, Shankar, Amid, Ehsan, Mathews, Rajiv, Lichtarge, Jared, Anil, Rohan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Implementations disclosed herein are directed to a hybrid federated learning (FL) technique that utilizes both federated averaging (FA) and federated distillation (FD) during a given round of FL of a given global machine learning (ML) model. Implementations may identify a population of client devices to participate in the given round of FL, determine a corresponding quantity of instances of client data available at each of the client devices that may be utilized during the given round of FL, and select different subsets of the client devices based on the corresponding quantity of instances of client data. Further, implementations may cause a first subset of the client devices to generate a corresponding FA update and a second subset of client devices to generate a corresponding FD update. Moreover, implementations may subsequently update the given global ML model based on the corresponding FA updates and the corresponding FD updates.