HIERARCHICAL TOURNAMENT-BASED MACHINE LEARNING PREDICTIONS
Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinatio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinations may be selected using the machine learning selection model. Each evaluation component combination of the set of evaluation component combinations may include an algorithm, a hierarchical learning model corresponding to a level of a hierarchy, and a prediction model for the target prediction. The set of evaluation component combinations may be transmitted to a cluster of computing nodes. Output results may be received for the set of evaluation component combinations. The output results may be evaluated using the metric to determine a winning evaluation component combination. The winning evaluation component combination may be stored in storage for use in calculating future predictions for the target prediction. |
---|