ATTENTION-BASED DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS AGENTS
A data source configured to provide a representation of an environment of one or more agents is identified. Using a data set obtained from the data source, a neural network-based reinforcement learning model with one or more attention layers is trained. Importance indicators generated by the attenti...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A data source configured to provide a representation of an environment of one or more agents is identified. Using a data set obtained from the data source, a neural network-based reinforcement learning model with one or more attention layers is trained. Importance indicators generated by the attention layers are used to identify actions to be initiated by an agent. A trained version of the model is stored. |
---|