MACHINE-LEARNING BASED TRANSCRIPT SUMMARIZATION

There is a need for more effective and efficient predictive natural language summarization. This need is addressed by applying hybrid extractive and abstractive summarization techniques in a unique processing pipeline to generate a cohesive and comprehensive summary of a multi-party interaction. A m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JOSYULA, Aditya Teja, MITTAL, Chirag, SABAPATHY, Rajesh, AWASTHI, Gourav
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a need for more effective and efficient predictive natural language summarization. This need is addressed by applying hybrid extractive and abstractive summarization techniques in a unique processing pipeline to generate a cohesive and comprehensive summary of a multi-party interaction. A method for generating the summary of a multi-party interaction includes receiving a multi-party interaction transcript data object comprising a plurality of interaction utterances from at least two participants; using an extractive summarization model to identify a key sentence of the multi-party interaction transcript data object; identifying an interaction utterance from the multi-party interaction transcript data object that corresponds to the key sentence; generating a contextual summary for the multi-party interaction transcript data object based at least in part on the interaction utterance; and generating a reported contextual summary for the multi-party interaction transcript data object based at least in part on the contextual summary.