DISTANCE ESTIMATION TO OBJECTS AND FREE-SPACE BOUNDARIES IN AUTONOMOUS MACHINE APPLICATIONS
In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicl...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors-such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that-in deployment-more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. |
---|