ADMINISTRATION OF THERAPEUTIC RADIATION USING DEEP LEARNING MODELS TO GENERATE LEAF SEQUENCES

A memory has stored therein a fluence map that corresponds to a particular patient and a deep learning model. The deep learning model is trained to deduce a leaf sequence for a multi-leaf collimator from a fluence map. The deep learning model comprises a neural network model that was trained, at lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuusela, Esa, Basiri, Shahab
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A memory has stored therein a fluence map that corresponds to a particular patient and a deep learning model. The deep learning model is trained to deduce a leaf sequence for a multi-leaf collimator from a fluence map. The deep learning model comprises a neural network model that was trained, at least in part, via a reinforcement learning method. A control circuit accesses the memory and is configured to iteratively optimize a radiation treatment plan to administer the therapeutic radiation to the patient by, at least in part, generating a leaf sequence as a function of the deep learning model and the fluence map by employing a plurality of agents to each separately use the deep learning model to each generate a leaf sequence for only a single leaf pair of the multi-leaf collimator.