ADMINISTRATION OF THERAPEUTIC RADIATION USING DEEP LEARNING MODELS TO GENERATE LEAF SEQUENCES
A memory has stored therein a fluence map that corresponds to a particular patient and a deep learning model. The deep learning model is trained to deduce a leaf sequence for a multi-leaf collimator from a fluence map. The deep learning model comprises a neural network model that was trained, at lea...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A memory has stored therein a fluence map that corresponds to a particular patient and a deep learning model. The deep learning model is trained to deduce a leaf sequence for a multi-leaf collimator from a fluence map. The deep learning model comprises a neural network model that was trained, at least in part, via a reinforcement learning method. A control circuit accesses the memory and is configured to iteratively optimize a radiation treatment plan to administer the therapeutic radiation to the patient by, at least in part, generating a leaf sequence as a function of the deep learning model and the fluence map by employing a plurality of agents to each separately use the deep learning model to each generate a leaf sequence for only a single leaf pair of the multi-leaf collimator. |
---|