ARTIFICIAL INTELLIGENCE BASED 3D RECONSTRUCTION
A projection dataset from a cone beam computed tomography (CBCT) can be input into a first set of one or more neural networks trained for at least one of saturation correction, truncation correction, and scatter correction. Reconstruction can then be performed on the output projection dataset to pro...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A projection dataset from a cone beam computed tomography (CBCT) can be input into a first set of one or more neural networks trained for at least one of saturation correction, truncation correction, and scatter correction. Reconstruction can then be performed on the output projection dataset to produce an image dataset. Thereafter, this image dataset can be input into a second set of one or more neural networks trained for at least one of noise reduction and artefact reduction, thereby generating a higher quality CBCT image. |
---|