SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS
Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space rep...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cho, Hyun Duk Kumar, Sushant Achan, Kannan Mani, Venugopal Inan, Aysenur Xu, Jianpeng |
description | Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space representations of the set of prior interactions is generated using a trained inference model. The trained inference model includes a joint variational autoencoder model. A set of k-recommended items is generated based on a comparison of the set of latent space representations of the set of prior interactions and a set of latent space representations of one or more items. A user interface including the set of k-recommended items is generated. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023245204A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023245204A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023245204A13</originalsourceid><addsrcrecordid>eNrjZLANjgwOcfUNVnD0c1HwdQ3x8HcJVggN9vRzV3BxdQ1Q8PL39AtRCHMM8nQM8fT3c_RRcAwN8Xf1c_Z3cQ0K5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGxkYmpkYGJo6GxsSpAgDxHir1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS</title><source>esp@cenet</source><creator>Cho, Hyun Duk ; Kumar, Sushant ; Achan, Kannan ; Mani, Venugopal ; Inan, Aysenur ; Xu, Jianpeng</creator><creatorcontrib>Cho, Hyun Duk ; Kumar, Sushant ; Achan, Kannan ; Mani, Venugopal ; Inan, Aysenur ; Xu, Jianpeng</creatorcontrib><description>Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space representations of the set of prior interactions is generated using a trained inference model. The trained inference model includes a joint variational autoencoder model. A set of k-recommended items is generated based on a comparison of the set of latent space representations of the set of prior interactions and a set of latent space representations of one or more items. A user interface including the set of k-recommended items is generated.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230803&DB=EPODOC&CC=US&NR=2023245204A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230803&DB=EPODOC&CC=US&NR=2023245204A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cho, Hyun Duk</creatorcontrib><creatorcontrib>Kumar, Sushant</creatorcontrib><creatorcontrib>Achan, Kannan</creatorcontrib><creatorcontrib>Mani, Venugopal</creatorcontrib><creatorcontrib>Inan, Aysenur</creatorcontrib><creatorcontrib>Xu, Jianpeng</creatorcontrib><title>SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS</title><description>Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space representations of the set of prior interactions is generated using a trained inference model. The trained inference model includes a joint variational autoencoder model. A set of k-recommended items is generated based on a comparison of the set of latent space representations of the set of prior interactions and a set of latent space representations of one or more items. A user interface including the set of k-recommended items is generated.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANjgwOcfUNVnD0c1HwdQ3x8HcJVggN9vRzV3BxdQ1Q8PL39AtRCHMM8nQM8fT3c_RRcAwN8Xf1c_Z3cQ0K5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGxkYmpkYGJo6GxsSpAgDxHir1</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Cho, Hyun Duk</creator><creator>Kumar, Sushant</creator><creator>Achan, Kannan</creator><creator>Mani, Venugopal</creator><creator>Inan, Aysenur</creator><creator>Xu, Jianpeng</creator><scope>EVB</scope></search><sort><creationdate>20230803</creationdate><title>SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS</title><author>Cho, Hyun Duk ; Kumar, Sushant ; Achan, Kannan ; Mani, Venugopal ; Inan, Aysenur ; Xu, Jianpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023245204A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyun Duk</creatorcontrib><creatorcontrib>Kumar, Sushant</creatorcontrib><creatorcontrib>Achan, Kannan</creatorcontrib><creatorcontrib>Mani, Venugopal</creatorcontrib><creatorcontrib>Inan, Aysenur</creatorcontrib><creatorcontrib>Xu, Jianpeng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Hyun Duk</au><au>Kumar, Sushant</au><au>Achan, Kannan</au><au>Mani, Venugopal</au><au>Inan, Aysenur</au><au>Xu, Jianpeng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS</title><date>2023-08-03</date><risdate>2023</risdate><abstract>Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space representations of the set of prior interactions is generated using a trained inference model. The trained inference model includes a joint variational autoencoder model. A set of k-recommended items is generated based on a comparison of the set of latent space representations of the set of prior interactions and a set of latent space representations of one or more items. A user interface including the set of k-recommended items is generated.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023245204A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cho,%20Hyun%20Duk&rft.date=2023-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023245204A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |