SYSTEMS AND METHODS USING DEEP JOINT VARIATIONAL AUTOENCODERS

Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cho, Hyun Duk, Kumar, Sushant, Achan, Kannan, Mani, Venugopal, Inan, Aysenur, Xu, Jianpeng
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems and methods for generating top-k recommendation using latent space representations generated by deep joint variational autoencoder processes are disclosed. A user identifier is received and a set of prior interactions associated with the user identifier is obtained. A set of latent space representations of the set of prior interactions is generated using a trained inference model. The trained inference model includes a joint variational autoencoder model. A set of k-recommended items is generated based on a comparison of the set of latent space representations of the set of prior interactions and a set of latent space representations of one or more items. A user interface including the set of k-recommended items is generated.