MACHINE LEARNING FOR IMPROVING MINED DATA QUALITY USING INTEGRATED DATA SOURCES

A processor may receive user interaction data of a user for a plurality of electronically-presented offers. The processor may generate a plurality of labels, the generating comprising generating a label for each respective offer according to a comparison of the quality of the user interactions of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kause, Kymm K, JANAKIRAMAN, Vijay Manikandan, Ranganathan, Nirmala, Furbish, Kevin Michael
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A processor may receive user interaction data of a user for a plurality of electronically-presented offers. The processor may generate a plurality of labels, the generating comprising generating a label for each respective offer according to a comparison of the quality of the user interactions of the respective offer to the frequency of the user interactions of the respective offer. Each label may be a positive label or a negative label. The processor may determine whether the generating produced both positive and negative labels. The processor may select one of a plurality of available ML models, wherein a two-class ML model is chosen in response to determining that the generating produced both positive and negative labels and a one-class ML model is chosen in response to determining that the generating did not produce both positive and negative labels. The selected ML model may be trained and/or may be used to process user profile data and provide recommendations.