AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION

Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fartaria, Mario, Haas, Benjamin M, Fluckiger, Simon, Genghi, Angelo, Friman, Anri Maarita, Maslowski, Alexander E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fartaria, Mario
Haas, Benjamin M
Fluckiger, Simon
Genghi, Angelo
Friman, Anri Maarita
Maslowski, Alexander E
description Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted organ label to a correction computing device, the processor receives one or more image fragments identifying corrections to the at least one predicted organ label. Upon transmitting the one or more image fragments and the image to a plurality of reviewer computing devices, the processor receives a plurality of inputs indicating whether the one or more image fragments are correct. When a number of inputs indicating an image fragment of the image fragments is correct exceeds a threshold, the processor aggregates the image fragment into a training data set. The processor trains the machine learning model with the training data set.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023100179A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023100179A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023100179A13</originalsourceid><addsrcrecordid>eNrjZLBwDA3x93UMcXXRUXD29_FxdPIPcgzxDHNVCAjyd3YNDlZw8w9ScPRU8PV3cfUBCbqEOod4-vvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQwMDQ3NLR0Nj4lQBAAjaKWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION</title><source>esp@cenet</source><creator>Fartaria, Mario ; Haas, Benjamin M ; Fluckiger, Simon ; Genghi, Angelo ; Friman, Anri Maarita ; Maslowski, Alexander E</creator><creatorcontrib>Fartaria, Mario ; Haas, Benjamin M ; Fluckiger, Simon ; Genghi, Angelo ; Friman, Anri Maarita ; Maslowski, Alexander E</creatorcontrib><description>Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted organ label to a correction computing device, the processor receives one or more image fragments identifying corrections to the at least one predicted organ label. Upon transmitting the one or more image fragments and the image to a plurality of reviewer computing devices, the processor receives a plurality of inputs indicating whether the one or more image fragments are correct. When a number of inputs indicating an image fragment of the image fragments is correct exceeds a threshold, the processor aggregates the image fragment into a training data set. The processor trains the machine learning model with the training data set.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230330&amp;DB=EPODOC&amp;CC=US&amp;NR=2023100179A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230330&amp;DB=EPODOC&amp;CC=US&amp;NR=2023100179A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fartaria, Mario</creatorcontrib><creatorcontrib>Haas, Benjamin M</creatorcontrib><creatorcontrib>Fluckiger, Simon</creatorcontrib><creatorcontrib>Genghi, Angelo</creatorcontrib><creatorcontrib>Friman, Anri Maarita</creatorcontrib><creatorcontrib>Maslowski, Alexander E</creatorcontrib><title>AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION</title><description>Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted organ label to a correction computing device, the processor receives one or more image fragments identifying corrections to the at least one predicted organ label. Upon transmitting the one or more image fragments and the image to a plurality of reviewer computing devices, the processor receives a plurality of inputs indicating whether the one or more image fragments are correct. When a number of inputs indicating an image fragment of the image fragments is correct exceeds a threshold, the processor aggregates the image fragment into a training data set. The processor trains the machine learning model with the training data set.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBwDA3x93UMcXXRUXD29_FxdPIPcgzxDHNVCAjyd3YNDlZw8w9ScPRU8PV3cfUBCbqEOod4-vvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQwMDQ3NLR0Nj4lQBAAjaKWQ</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Fartaria, Mario</creator><creator>Haas, Benjamin M</creator><creator>Fluckiger, Simon</creator><creator>Genghi, Angelo</creator><creator>Friman, Anri Maarita</creator><creator>Maslowski, Alexander E</creator><scope>EVB</scope></search><sort><creationdate>20230330</creationdate><title>AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION</title><author>Fartaria, Mario ; Haas, Benjamin M ; Fluckiger, Simon ; Genghi, Angelo ; Friman, Anri Maarita ; Maslowski, Alexander E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023100179A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fartaria, Mario</creatorcontrib><creatorcontrib>Haas, Benjamin M</creatorcontrib><creatorcontrib>Fluckiger, Simon</creatorcontrib><creatorcontrib>Genghi, Angelo</creatorcontrib><creatorcontrib>Friman, Anri Maarita</creatorcontrib><creatorcontrib>Maslowski, Alexander E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fartaria, Mario</au><au>Haas, Benjamin M</au><au>Fluckiger, Simon</au><au>Genghi, Angelo</au><au>Friman, Anri Maarita</au><au>Maslowski, Alexander E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION</title><date>2023-03-30</date><risdate>2023</risdate><abstract>Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted organ label to a correction computing device, the processor receives one or more image fragments identifying corrections to the at least one predicted organ label. Upon transmitting the one or more image fragments and the image to a plurality of reviewer computing devices, the processor receives a plurality of inputs indicating whether the one or more image fragments are correct. When a number of inputs indicating an image fragment of the image fragments is correct exceeds a threshold, the processor aggregates the image fragment into a training data set. The processor trains the machine learning model with the training data set.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023100179A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Fartaria,%20Mario&rft.date=2023-03-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023100179A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true