AUTOMATED, COLLABORATIVE PROCESS FOR AI MODEL PRODUCTION

Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fartaria, Mario, Haas, Benjamin M, Fluckiger, Simon, Genghi, Angelo, Friman, Anri Maarita, Maslowski, Alexander E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Embodiments described herein provide for training a machine learning model for automatic organ segmentation. A processor executes a machine learning model using an image to output at least one predicted organ label for a plurality of pixels of the image. Upon transmitting the at least one predicted organ label to a correction computing device, the processor receives one or more image fragments identifying corrections to the at least one predicted organ label. Upon transmitting the one or more image fragments and the image to a plurality of reviewer computing devices, the processor receives a plurality of inputs indicating whether the one or more image fragments are correct. When a number of inputs indicating an image fragment of the image fragments is correct exceeds a threshold, the processor aggregates the image fragment into a training data set. The processor trains the machine learning model with the training data set.