Multi-Dimensional Table Reproduction From Image
Embodiments facilitate selection and assignment of a known user model, based upon input comprising table images of original data. A table engine receives the image and performs pre-processing (e.g., rasterization, Optical Character Recognition, coordinate representation) thereupon to identify image...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embodiments facilitate selection and assignment of a known user model, based upon input comprising table images of original data. A table engine receives the image and performs pre-processing (e.g., rasterization, Optical Character Recognition, coordinate representation) thereupon to identify image entities. After filtering original numerical data, a similarity (e.g., a distance) is calculated between an image entity and a dimension member of the known user model. Based upon this similarity, the table engine selects and assigns the known user model to the incoming tables images, generating a file representing table columns and rows. This file is received at the UI of an analytics platform, which in turn populates the model with data of the user (rather than the original data) via an API. Embodiments may be particularly valuable in allowing a user to rapidly generate multi-dimensional tables comprising their own data, based upon raw table images received from an external party. |
---|