VARIABLE NOZZLE DEVICE, TURBINE, AND TURBOCHARGER
A variable nozzle device 20 for a variable geometry turbocharger includes: a nozzle mount 21; a nozzle plate 22 disposed so as to face the nozzle mount, the nozzle plate forming a nozzle flow passage 4 having an annular shape between the nozzle plate 22 and the nozzle mount 21; and a plurality of va...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variable nozzle device 20 for a variable geometry turbocharger includes: a nozzle mount 21; a nozzle plate 22 disposed so as to face the nozzle mount, the nozzle plate forming a nozzle flow passage 4 having an annular shape between the nozzle plate 22 and the nozzle mount 21; and a plurality of variable nozzle vanes 6 disposed at a predetermined interval in a circumferential direction of the nozzle flow passage 4 so as to be individually rotatable about a pivot axis 02. The nozzle plate 22 includes a first surface 33 facing the nozzle mount 21, a second surface 34 opposite to the first surface 33, and at least one through hole 36 formed through the first surface 33 and the second surface 35. The at least one through hole 36 has a first opening 36a formed on the first surface 33 at an inner side of the pivot axis with respect to a radial direction, and a second opening 36b formed on the second surface 35 at an outer side of the first opening 36a with respect to the radial direction or at the same position as the first opening 36a with respect to the radial direction. Accordingly, as the working fluid 'g' injected from the through hole 36 joins the working fluid G flowing through the nozzle flow passage 4 toward the turbine wheel 3 through the plurality of variable nozzle vanes 6, the flow of the working fluid G is guided toward the inner surface at the hub 32 side, and thereby it is possible to suppress deviation of flow of the working fluid G toward the shroud, that is, suppress the drift of the working fluid G. |
---|