CRYOABLATION CATHETER
A cryoablation catheter, comprising a balloon (1) and a delivery catheter (2) passing through the balloon (1). The delivery catheter (2) is provided with a fluid inflow cavity (21) and a fluid outflow cavity (22) therein. The fluid inflow cavity (21) extends into the balloon (1), and a side wall of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cryoablation catheter, comprising a balloon (1) and a delivery catheter (2) passing through the balloon (1). The delivery catheter (2) is provided with a fluid inflow cavity (21) and a fluid outflow cavity (22) therein. The fluid inflow cavity (21) extends into the balloon (1), and a side wall of the fluid inflow cavity (21) is provided with a spray head (211) that injects a liquid into the balloon (1). The spray head (211) has a number of spray holes (2111, 2112) circumferentially arranged on the exterior of the fluid inflow cavity (21). An end of the fluid outflow cavity (22) has a cross section (24) that seals the fluid outflow cavity (22), and a side wall of the fluid outflow cavity (22) is provided with a reflow hole (221) in communication with the balloon (1). A fluid flows from the fluid inflow cavity (21) through the nozzle holes (2111, 2112) into the balloon (1). The nozzle holes (2111, 2112) are evenly distributed outside the fluid inflow cavity (21), so that the interior of the balloon (1) is uniformly filled with the refrigeration fluid, ensuring the uniformity of heat exchange at each part of the balloon (1) in an axial direction. The fluid then flows out from the reflow hole (221). The structural design can effectively improve the heat exchange efficiency of the fluid, and the production and processing processes are relatively simple. |
---|