ESTIMATION OF POWER PROFILES FOR NEURAL NETWORK MODELS RUNNING ON AI ACCELERATORS

Technology for estimating neural network (NN) power profiles includes obtaining a plurality of workloads for a compiled NN model, the plurality of workloads determined for a hardware execution device, determining a hardware efficiency factor for the compiled NN model, and generating, based on the ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Palla, Alessandro, Almalih, Sara, Richmond, Richard, Elmalaki, Mohamed, Zeng, Lingdan, Hacking, Lance, Luk, Eric
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Technology for estimating neural network (NN) power profiles includes obtaining a plurality of workloads for a compiled NN model, the plurality of workloads determined for a hardware execution device, determining a hardware efficiency factor for the compiled NN model, and generating, based on the hardware efficiency factor, a power profile for the compiled NN model on one or more of a per-layer basis or a per-workload basis. The hardware efficiency factor can be determined on based on a hardware efficiency measurement and a hardware utilization measurement, and can be determined on a per-workload basis. A configuration file can be provided for generating the power profile, and an output visualization of the power profile can be generated. Further, feedback information can be generated to perform one or more of selecting a hardware device, optimizing a breakdown of workloads, optimizing a scheduling of tasks, or confirming a hardware device design.