SENSOR COMPENSATION USING BACKPROPAGATION

An embodiment includes training a first convolutional neural network (CNN) using a plurality of training images to generate first and second trained CNNs, and then adding an interface layer to the second trained CNN. The embodiment processes a first and second images in a sequence of images using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cho, Minsik, Yoo, Chungkuk, Hwang, Inseok
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An embodiment includes training a first convolutional neural network (CNN) using a plurality of training images to generate first and second trained CNNs, and then adding an interface layer to the second trained CNN. The embodiment processes a first and second images in a sequence of images using the first trained CNN to generate a first and second result vectors. The embodiment also processes the second image using the second trained CNN and sensor data input to the interface layer to generate a third result vector. The embodiment modifies the sensor data using a compensation value. The embodiment compares the third result vector to the second result vector to generate an error value, and then calculates a modified compensation value using the error value. The embodiment then generates a sensor-compensated trained CNN based on the second trained CNN with the modified compensation value.