SENSOR COMPENSATION USING BACKPROPAGATION
An embodiment includes training a first convolutional neural network (CNN) using a plurality of training images to generate first and second trained CNNs, and then adding an interface layer to the second trained CNN. The embodiment processes a first and second images in a sequence of images using th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An embodiment includes training a first convolutional neural network (CNN) using a plurality of training images to generate first and second trained CNNs, and then adding an interface layer to the second trained CNN. The embodiment processes a first and second images in a sequence of images using the first trained CNN to generate a first and second result vectors. The embodiment also processes the second image using the second trained CNN and sensor data input to the interface layer to generate a third result vector. The embodiment modifies the sensor data using a compensation value. The embodiment compares the third result vector to the second result vector to generate an error value, and then calculates a modified compensation value using the error value. The embodiment then generates a sensor-compensated trained CNN based on the second trained CNN with the modified compensation value. |
---|