SYSTEMS AND METHODS FOR DETERMINING EXPLAINABILITY OF MACHINE PREDICTED DECISIONS
This disclosure relates generally to system and method for determining explainability of machine predicted decisions. Typical explainable AI (XAI) solutions are limited by type of data processed, such as structured, semi-structured and unstructured text. In addition, due to limited automation of the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This disclosure relates generally to system and method for determining explainability of machine predicted decisions. Typical explainable AI (XAI) solutions are limited by type of data processed, such as structured, semi-structured and unstructured text. In addition, due to limited automation of the process of explainability, typical systems are cumbersome and time-consuming. The system and method provide an end to end solution for automating the determination of explainability of machine predicted decisions. The XAI process output an absolute relevance score indicative of relevance of the features associated with the prediction which is indicative of percentage relevance/contribution of individual feature. The system further computes relative relevance score of the features by adding up all the features and calculating how much each individual feature is contributing to the total score. The relative relevance scores are utilized for determining explainability of decisions of the prediction. |
---|