EXPERIMENT AND MACHINE-LEARNING TECHNIQUES TO IDENTIFY AND GENERATE HIGH AFFINITY BINDERS
The present disclosure relates to in vitro experiments and in silico computation and machine-learning based techniques to iteratively improve a process for identifying binders that can bind any given molecular target. Particularly, aspects of the present disclosure are directed to obtaining initial...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present disclosure relates to in vitro experiments and in silico computation and machine-learning based techniques to iteratively improve a process for identifying binders that can bind any given molecular target. Particularly, aspects of the present disclosure are directed to obtaining initial sequence data for aptamers that bind to a target, measuring a first signal to noise ratio within the initial sequence data, provisioning, based on the first signal to noise ratio, a first machine-learning system, generating, by the first machine-learning system, a first set of aptamer sequences, obtaining subsequent sequence data for aptamers that bind to the target, measuring a second signal to noise ratio within the subsequent sequence data, provisioning, based on the second signal to noise ratio, a second machine-learning system, generating, by the second machine-learning system, a second set of aptamer sequences, and outputting the second set of aptamer sequences. |
---|