SYSTEMS AND METHODS FOR DETECTING DRIFT BETWEEN DATA USED TO TRAIN A MACHINE LEARNING MODEL AND DATA USED TO EXECUTE THE MACHINE LEARNING MODEL
In some embodiments, a first plurality of representations are extracted from a first data set. A first set of distributions are generated based on the first plurality of representations. A machine learning model is trained based on the first plurality of representations and the first set of distribu...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In some embodiments, a first plurality of representations are extracted from a first data set. A first set of distributions are generated based on the first plurality of representations. A machine learning model is trained based on the first plurality of representations and the first set of distributions. A second plurality of representations are extracted from a second data set different from the first data set. The machine learning model is executed based on the second plurality of representations to produce a second set of distributions. An anomaly score is determined for each datum from the second data set to produce a set of anomaly scores. The set of anomaly scores are determined based on the first set of distributions and the second set of distributions. A notification is generated when at least one anomaly score from the set of anomaly scores is larger than a predetermined threshold. |
---|