AUTOMATED CONTROL OF A MANUFACTURING PROCESS

A computing device trains a machine state predictive model. A generative adversarial network with an autoencoder is trained using a first plurality of observation vectors. Each observation vector of the first plurality of observation vectors includes state variable values for state variables and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oroojlooyjadid, Afshin, Zhang, Ruiwen, Valsaraj, Varunraj, Walker, Jonathan Lee, Wang, Weichen, Silva, Jorge Manuel Gomes da, Azizsoltani, Hamoon, Desai, Hardi, Nazari, Mohammadreza, Mookiah, Prathaban, Blanchard, Robert, Hajinezhad, Davood, Dizche, Amirhassan Fallah, Liu, Ye
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computing device trains a machine state predictive model. A generative adversarial network with an autoencoder is trained using a first plurality of observation vectors. Each observation vector of the first plurality of observation vectors includes state variable values for state variables and an action variable value for an action variable. The state variables define a machine state, wherein the action variable defines a next action taken in response to the machine state. The first plurality of observation vectors successively defines sequential machine states to manufacture a product. A second plurality of observation vectors is generated using the trained generative adversarial network with the autoencoder. A machine state machine learning model is trained to predict a subsequent machine state using the first plurality of observation vectors and the generated second plurality of observation vectors. A description of the machine state machine learning model is output.