CLASSIFYING ELEMENTS AND PREDICTING PROPERTIES IN AN INFRASTRUCTURE MODEL THROUGH PROTOTYPE NETWORKS AND WEAKLY SUPERVISED LEARNING

In example embodiments, a software service may employ a neural network to learn a non-linear mapping that transforms element features into embeddings. The neural network may be trained to distribute the embeddings in multi-dimensional embedding space, such that distance between the embeddings is mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rausch-Larouche, Evan, Jahjah, Karl-Alexandre, Lapointe, Marc-André, Asselin, Louis-Philippe
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In example embodiments, a software service may employ a neural network to learn a non-linear mapping that transforms element features into embeddings. The neural network may be trained to distribute the embeddings in multi-dimensional embedding space, such that distance between the embeddings is meaningful to the class or category classification, or property prediction, task at hand. The neural network may be trained using weakly supervised machine learning, using weakly labeled infrastructure models. Embeddings for groups may be used to determine prototypes. Elements of an infrastructure model may be classified into classes or categories, or their properties predicted, as the case may be, by finding a nearest prototype.