CLASSIFYING ELEMENTS AND PREDICTING PROPERTIES IN AN INFRASTRUCTURE MODEL THROUGH PROTOTYPE NETWORKS AND WEAKLY SUPERVISED LEARNING
In example embodiments, a software service may employ a neural network to learn a non-linear mapping that transforms element features into embeddings. The neural network may be trained to distribute the embeddings in multi-dimensional embedding space, such that distance between the embeddings is mea...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In example embodiments, a software service may employ a neural network to learn a non-linear mapping that transforms element features into embeddings. The neural network may be trained to distribute the embeddings in multi-dimensional embedding space, such that distance between the embeddings is meaningful to the class or category classification, or property prediction, task at hand. The neural network may be trained using weakly supervised machine learning, using weakly labeled infrastructure models. Embeddings for groups may be used to determine prototypes. Elements of an infrastructure model may be classified into classes or categories, or their properties predicted, as the case may be, by finding a nearest prototype. |
---|