Carrier And Sampling Frequency Offset Estimation For RF Communication With Crystal-Less Nodes
When the ultra-low power mm-scale sensor node does not have a crystal oscillator and phase-lock loop, it inevitably exhibits significant carrier frequency offset (CFO) and sampling frequency offset (SFO) with respect to the reference frequencies in the gateway. This disclosure enables efficient real...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When the ultra-low power mm-scale sensor node does not have a crystal oscillator and phase-lock loop, it inevitably exhibits significant carrier frequency offset (CFO) and sampling frequency offset (SFO) with respect to the reference frequencies in the gateway. This disclosure enables efficient real-time calculation of accurate SFO and CFO at the gateway, thus the ultra-low power mm-scale sensor node can be realized without a costly and bulky clock reference crystal and also power-hungry phase lock loop. In the proposed system, the crystal-less sensor starts transmission with repetitive RF pulses with a constant interval, followed by the data payload using pulse-position modulation (PPM). A proposed algorithm uses a two-dimensional (2D) fast Fourier transform (FFT) based process that identifies the SFO and CFO at the same time to establish successful wireless communication between the gateway and crystal-less sensor nodes. |
---|