AI-ACCELERATED CHARACTERIZATION OF MATERIALS
Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | IVANKIN, Andrey SWISHER, Jordan H ASHLEY, Michael J |
description | Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022318658A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022318658A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022318658A13</originalsourceid><addsrcrecordid>eNrjZNBx9NR1dHZ29XENcgxxdVFw9nAMcnQOcQ3yjHIM8fT3U_B3U_B1BPEdfYJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRsaGFmamFo6ExcaoAInwmFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><source>esp@cenet</source><creator>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</creator><creatorcontrib>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</creatorcontrib><description>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221006&DB=EPODOC&CC=US&NR=2022318658A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221006&DB=EPODOC&CC=US&NR=2022318658A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IVANKIN, Andrey</creatorcontrib><creatorcontrib>SWISHER, Jordan H</creatorcontrib><creatorcontrib>ASHLEY, Michael J</creatorcontrib><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><description>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBx9NR1dHZ29XENcgxxdVFw9nAMcnQOcQ3yjHIM8fT3U_B3U_B1BPEdfYJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRsaGFmamFo6ExcaoAInwmFw</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>IVANKIN, Andrey</creator><creator>SWISHER, Jordan H</creator><creator>ASHLEY, Michael J</creator><scope>EVB</scope></search><sort><creationdate>20221006</creationdate><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><author>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022318658A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>IVANKIN, Andrey</creatorcontrib><creatorcontrib>SWISHER, Jordan H</creatorcontrib><creatorcontrib>ASHLEY, Michael J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IVANKIN, Andrey</au><au>SWISHER, Jordan H</au><au>ASHLEY, Michael J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><date>2022-10-06</date><risdate>2022</risdate><abstract>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022318658A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | AI-ACCELERATED CHARACTERIZATION OF MATERIALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IVANKIN,%20Andrey&rft.date=2022-10-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022318658A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |