AI-ACCELERATED CHARACTERIZATION OF MATERIALS

Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: IVANKIN, Andrey, SWISHER, Jordan H, ASHLEY, Michael J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator IVANKIN, Andrey
SWISHER, Jordan H
ASHLEY, Michael J
description Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022318658A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022318658A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022318658A13</originalsourceid><addsrcrecordid>eNrjZNBx9NR1dHZ29XENcgxxdVFw9nAMcnQOcQ3yjHIM8fT3U_B3U_B1BPEdfYJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRsaGFmamFo6ExcaoAInwmFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><source>esp@cenet</source><creator>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</creator><creatorcontrib>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</creatorcontrib><description>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221006&amp;DB=EPODOC&amp;CC=US&amp;NR=2022318658A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221006&amp;DB=EPODOC&amp;CC=US&amp;NR=2022318658A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IVANKIN, Andrey</creatorcontrib><creatorcontrib>SWISHER, Jordan H</creatorcontrib><creatorcontrib>ASHLEY, Michael J</creatorcontrib><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><description>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBx9NR1dHZ29XENcgxxdVFw9nAMcnQOcQ3yjHIM8fT3U_B3U_B1BPEdfYJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRsaGFmamFo6ExcaoAInwmFw</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>IVANKIN, Andrey</creator><creator>SWISHER, Jordan H</creator><creator>ASHLEY, Michael J</creator><scope>EVB</scope></search><sort><creationdate>20221006</creationdate><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><author>IVANKIN, Andrey ; SWISHER, Jordan H ; ASHLEY, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022318658A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>IVANKIN, Andrey</creatorcontrib><creatorcontrib>SWISHER, Jordan H</creatorcontrib><creatorcontrib>ASHLEY, Michael J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IVANKIN, Andrey</au><au>SWISHER, Jordan H</au><au>ASHLEY, Michael J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI-ACCELERATED CHARACTERIZATION OF MATERIALS</title><date>2022-10-06</date><risdate>2022</risdate><abstract>Devices, systems, and methods for material characterization can include detecting definitional data from material samples that are positionally encoded according to know attributes as operational data, characterizing at least some of the samples as training data, and processing the training data via a machine learning model to train the model and/or to characterize the remaining samples based on the training data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022318658A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title AI-ACCELERATED CHARACTERIZATION OF MATERIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IVANKIN,%20Andrey&rft.date=2022-10-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022318658A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true