MODULAR PHYSICAL LAYER AND INTEGRATED CONNECTOR MODULE FOR LOCAL AREA NETWORKS

An Ethernet network is composed of one or more network infrastructure devices, such as a hubs, repeaters, switches or routers, which provides data interconnection and may provide operational power, or some part thereof, to remote network data terminal equipment such as a wireless access point, IP te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CRAYFORD, Ian, WEI, Kuan-Hsiung, CHIEN, Shin-Hao
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Ethernet network is composed of one or more network infrastructure devices, such as a hubs, repeaters, switches or routers, which provides data interconnection and may provide operational power, or some part thereof, to remote network data terminal equipment such as a wireless access point, IP telephone, IP camera or network end station. Most Ethernet networks operate over a combination of the pairs in an unshielded twisted pair (UTP) or shielded twisted pair (STP) cable, or in some cases may operate over fiber optic cables. The individual links of Ethernet network, between the network infrastructure device and the Data Terminal Equipment (DTE) may be able to operate at one or more data rates such as 10 Mb/s, 100 Mb/s, 1 Gb/s, 2.5 Gb/s, 5 Gb/s and 10 Gb/s, or any combination thereof. The invention discloses an Ethernet Physical Layer (PHY) circuit, in combination with an Integrated Connector Module (ICM), which may reside inside the network equipment at either end of the Ethernet link. The combined PHY-ICM physical layer network device provides the appropriate encoding/decoding and signaling to operate over the specific network cable medium at the required data rate(s). The electrical and mechanical design of the combined PHY-ICM enables a modular approach such that during final assembly, the PHY-ICM can be optimized for operation over the appropriate data rate(s), whether it supports the provision of operational power between the network equipment, and if so at what power level, as well as other functionality. Furthermore, the PHY-ICM is designed to maintain a common electrical and mechanical footprint regardless of which of the features are included or excluded, to optimize the system cost for a specific maximum data rate, as well as minimize any re-engineering necessary on the part of the network equipment designer.