MACHINE LEARNING TRACEBACK-ENABLED DECISION RATIONALES AS MODELS FOR EXPLAINABILITY
Techniques for providing decision rationales for machine-learning guided processes are described herein. In some embodiments, the techniques described herein include processing queries for an explanation of an outcome of a set of one or more decisions guided by one or more machine-learning processes...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques for providing decision rationales for machine-learning guided processes are described herein. In some embodiments, the techniques described herein include processing queries for an explanation of an outcome of a set of one or more decisions guided by one or more machine-learning processes with supervision by at least one human operator. Responsive to receiving the query, a system determines, based on a set of one or more rationale data structures, whether the outcome was caused by human operator error or the one or more machine-learning processes. The system then generates a query response indicating whether the outcome was caused by the human operator error or the one or more machine-learning processes. |
---|