Decreasing Error in a Machine Learning Model Based on Identifying Reference and Monitored Groups of the Machine Learning Model
A machine learning model data quality improvement detection tool is provided for identifying an accurate reference group and an accurate monitored group of a machine learning model. The tool monitors a behavior of the machine learning model for a predetermined time frame. The tool compares a determi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A machine learning model data quality improvement detection tool is provided for identifying an accurate reference group and an accurate monitored group of a machine learning model. The tool monitors a behavior of the machine learning model for a predetermined time frame. The tool compares a determined fairness metric a pre-defined fairness threshold. Responsive to the fairness metric failing to meet the pre-defined fairness threshold, the tool modifies the monitored group to include a first portion of the reference group. The tool compares a newly determined fairness metric to the pre-defined fairness threshold. Responsive to the newly determined fairness metric meeting the pre-defined fairness threshold, the tool identifies the modified monitored group including the first portion of the user-defined reference group as a new monitored group and the modified reference group without the first portion of the user-defined reference group as a new reference group. |
---|