TRAFFIC LIGHT ACTIVE LEARNING PIPELINE
Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the predi...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kaku, Sunsho Pillai, Sudeep Wolcott, Ryan W Chen, Kun-Hsin Gong, Peiyan Garber, David L Jin, Hai Yoo, Sarah |
description | Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022114375A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022114375A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022114375A13</originalsourceid><addsrcrecordid>eNrjZFALCXJ0c_N0VvDxdPcIUXB0DvEMc1XwcXUM8vP0c1cI8Axw9fH0c-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRkaGhibG5qaOhsbEqQIAQDEkUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><source>esp@cenet</source><creator>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</creator><creatorcontrib>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</creatorcontrib><description>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; GYROSCOPIC INSTRUMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURVEYING ; TESTING ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220414&DB=EPODOC&CC=US&NR=2022114375A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220414&DB=EPODOC&CC=US&NR=2022114375A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kaku, Sunsho</creatorcontrib><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Wolcott, Ryan W</creatorcontrib><creatorcontrib>Chen, Kun-Hsin</creatorcontrib><creatorcontrib>Gong, Peiyan</creatorcontrib><creatorcontrib>Garber, David L</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Yoo, Sarah</creatorcontrib><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><description>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURVEYING</subject><subject>TESTING</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFALCXJ0c_N0VvDxdPcIUXB0DvEMc1XwcXUM8vP0c1cI8Axw9fH0c-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRkaGhibG5qaOhsbEqQIAQDEkUA</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Kaku, Sunsho</creator><creator>Pillai, Sudeep</creator><creator>Wolcott, Ryan W</creator><creator>Chen, Kun-Hsin</creator><creator>Gong, Peiyan</creator><creator>Garber, David L</creator><creator>Jin, Hai</creator><creator>Yoo, Sarah</creator><scope>EVB</scope></search><sort><creationdate>20220414</creationdate><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><author>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022114375A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURVEYING</topic><topic>TESTING</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaku, Sunsho</creatorcontrib><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Wolcott, Ryan W</creatorcontrib><creatorcontrib>Chen, Kun-Hsin</creatorcontrib><creatorcontrib>Gong, Peiyan</creatorcontrib><creatorcontrib>Garber, David L</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Yoo, Sarah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaku, Sunsho</au><au>Pillai, Sudeep</au><au>Wolcott, Ryan W</au><au>Chen, Kun-Hsin</au><au>Gong, Peiyan</au><au>Garber, David L</au><au>Jin, Hai</au><au>Yoo, Sarah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><date>2022-04-14</date><risdate>2022</risdate><abstract>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022114375A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY GYROSCOPIC INSTRUMENTS HANDLING RECORD CARRIERS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SURVEYING TESTING WIRELESS COMMUNICATIONS NETWORKS |
title | TRAFFIC LIGHT ACTIVE LEARNING PIPELINE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kaku,%20Sunsho&rft.date=2022-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022114375A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |