TRAFFIC LIGHT ACTIVE LEARNING PIPELINE

Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaku, Sunsho, Pillai, Sudeep, Wolcott, Ryan W, Chen, Kun-Hsin, Gong, Peiyan, Garber, David L, Jin, Hai, Yoo, Sarah
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kaku, Sunsho
Pillai, Sudeep
Wolcott, Ryan W
Chen, Kun-Hsin
Gong, Peiyan
Garber, David L
Jin, Hai
Yoo, Sarah
description Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022114375A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022114375A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022114375A13</originalsourceid><addsrcrecordid>eNrjZFALCXJ0c_N0VvDxdPcIUXB0DvEMc1XwcXUM8vP0c1cI8Axw9fH0c-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRkaGhibG5qaOhsbEqQIAQDEkUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><source>esp@cenet</source><creator>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</creator><creatorcontrib>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</creatorcontrib><description>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; GYROSCOPIC INSTRUMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURVEYING ; TESTING ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022114375A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022114375A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kaku, Sunsho</creatorcontrib><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Wolcott, Ryan W</creatorcontrib><creatorcontrib>Chen, Kun-Hsin</creatorcontrib><creatorcontrib>Gong, Peiyan</creatorcontrib><creatorcontrib>Garber, David L</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Yoo, Sarah</creatorcontrib><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><description>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURVEYING</subject><subject>TESTING</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFALCXJ0c_N0VvDxdPcIUXB0DvEMc1XwcXUM8vP0c1cI8Axw9fH0c-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRkaGhibG5qaOhsbEqQIAQDEkUA</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Kaku, Sunsho</creator><creator>Pillai, Sudeep</creator><creator>Wolcott, Ryan W</creator><creator>Chen, Kun-Hsin</creator><creator>Gong, Peiyan</creator><creator>Garber, David L</creator><creator>Jin, Hai</creator><creator>Yoo, Sarah</creator><scope>EVB</scope></search><sort><creationdate>20220414</creationdate><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><author>Kaku, Sunsho ; Pillai, Sudeep ; Wolcott, Ryan W ; Chen, Kun-Hsin ; Gong, Peiyan ; Garber, David L ; Jin, Hai ; Yoo, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022114375A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURVEYING</topic><topic>TESTING</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaku, Sunsho</creatorcontrib><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Wolcott, Ryan W</creatorcontrib><creatorcontrib>Chen, Kun-Hsin</creatorcontrib><creatorcontrib>Gong, Peiyan</creatorcontrib><creatorcontrib>Garber, David L</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Yoo, Sarah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaku, Sunsho</au><au>Pillai, Sudeep</au><au>Wolcott, Ryan W</au><au>Chen, Kun-Hsin</au><au>Gong, Peiyan</au><au>Garber, David L</au><au>Jin, Hai</au><au>Yoo, Sarah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAFFIC LIGHT ACTIVE LEARNING PIPELINE</title><date>2022-04-14</date><risdate>2022</risdate><abstract>Systems and methods are provided for developing/updating training datasets for traffic light detection/perception models. V2I-based information may indicate a particular traffic light state/state of transition. This information can be compared to a traffic light perception prediction. When the prediction is inconsistent with the V2I-based information, data regarding the condition(s)/traffic light(s)/etc. can be saved and uploaded to a training database to update/refine the training dataset(s) maintained therein. In this way, an existing traffic light perception model can be updated/improved and/or a better traffic light perception model can be developed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022114375A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
GYROSCOPIC INSTRUMENTS
HANDLING RECORD CARRIERS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SURVEYING
TESTING
WIRELESS COMMUNICATIONS NETWORKS
title TRAFFIC LIGHT ACTIVE LEARNING PIPELINE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kaku,%20Sunsho&rft.date=2022-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022114375A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true