DIFFERENTIAL PRIVACY DATASET GENERATION USING GENERATIVE MODELS

Apparatuses, systems, and techniques to train a generative model based at least in part on a private dataset. In at least one embodiment, the generative model is trained based at least in part on a differentially private Sinkhorn algorithm, for example, using backpropagation with gradient descent to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreis, Karsten Julian, Vahdat, Arash, Bie, Alex, Cao, Tianshi, Fidler, Sanja
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Apparatuses, systems, and techniques to train a generative model based at least in part on a private dataset. In at least one embodiment, the generative model is trained based at least in part on a differentially private Sinkhorn algorithm, for example, using backpropagation with gradient descent to determine a gradient of a set of parameters of the generative models and modifying the set of parameters based at least in part on the gradient.