MOMENTUM CONTRASTIVE AUTOENCODER

The embodiments are directed to training a momentum contrastive autoencoder using a contrastive learning framework. The contrastive learning framework learns a latent space distribution by matching latent representations of the momentum contrastive autoencoder to a pre-specified distribution, such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Arpit, Devansh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The embodiments are directed to training a momentum contrastive autoencoder using a contrastive learning framework. The contrastive learning framework learns a latent space distribution by matching latent representations of the momentum contrastive autoencoder to a pre-specified distribution, such as a distribution over a unit hyper-sphere. Once the latent space distribution is learned, samples for a new data set may be obtained from the latent space distribution. This results in a simple and scalable algorithm that avoids many of the optimization challenges of existing generative models, while retaining the advantage of efficient sampling.