METHODS AND APPARATUS EMPLOYING HIERARCHICAL CONDITIONAL VALUE AT RISK TO MINIMIZE DOWNSIDE RISK OF A MULTI-ASSET CLASS PORTFOLIO AND IMPROVED GRAPHICAL USER INTERFACE
The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-bas...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-based conditional value-at-risk (CVaR) approach for minimizing the downside risk of a multi-asset class portfolio is addressed that uses Monte-Carlo simulations to generate the asset return scenarios. These return scenarios are incorporated into a modified Rockafellar-Uryasev based convex programming formulation to generate an optimized hedge. One example addresses hedging in an equity portfolio with options. Testing shows that a hierarchical CVaR approach generates portfolios with better predicted worst case loss, downside risk, standard deviation, and skew. |
---|