SYSTEMS AND METHODS FOR AUGMENTING DATA BY PERFORMING REJECT INFERENCE

Systems and methods for augmenting data by performing reject inference are disclosed. In one embodiment, the disclosed process trains an auto-encoder based on a subset of known labeled rows (e.g., non-default loan applicants). The process then infers labels for unlabeled rows using the auto-encoder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Budzik, Jerome, Hesami, Peyman, Kamkar, Sean
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems and methods for augmenting data by performing reject inference are disclosed. In one embodiment, the disclosed process trains an auto-encoder based on a subset of known labeled rows (e.g., non-default loan applicants). The process then infers labels for unlabeled rows using the auto-encoder (e.g., label some rows as non-default and some as default). The process then trains a machine learning model based on the known labeled rows and the inferred labeled rows. Applicant data is then processed by this new machine learning model to determine if a loan applicant is likely to default. If the loan applicant is not likely to default, the loan applicant is funded. For example, the loan applicant may be mailed a physical working credit card. However, if the loan applicant is likely to default, the loan applicant is rejected. For example, the loan applicant may be mailed a physical adverse action letter.