GENERALIZED EXPECTATION MAXIMIZATION
Techniques are described that extend supervised machine-learning algorithms for use with semi-supervised training. Random labels are assigned to unlabeled training data, and the data is split into k partitions. During a label-training iteration, each of these k partitions is combined with the labele...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques are described that extend supervised machine-learning algorithms for use with semi-supervised training. Random labels are assigned to unlabeled training data, and the data is split into k partitions. During a label-training iteration, each of these k partitions is combined with the labeled training data, and the combination is used train a single instance of the machine-learning model. Each of these trained models are then used to predict labels for data points in the k−1 partitions of previously-unlabeled training data that were not used to train of the model. Thus, every data point in the previously-unlabeled training data obtains k−1 predicted labels. For each data point, these labels are aggregated to obtain a composite label prediction for the data point. After the labels are determined via one or more label-training iterations, a machine-learning model is trained on data with the resulting composite label predictions and on the labeled data set. |
---|